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The usage of two static gratings for obtaining super-resolved imaging dates back to the work by Bachl and
Lukosz in 1967. However, in their approach a severe reduction in the field of view was the necessary con-
dition for improving the resolution. We present an approach based on two static gratings without sacrifi-
cing the field of view. The key idea for not paying with the field of view is to use white light illumination to
average the ghost images obtained outside the region of interest since the positions of those images are
wavelength dependent. Moreover, large magnification is achieved by using a commercial microscope ob-
jective instead of a test system with a unity magnification as presented in previous works. Because of the
large magnification, the second grating has a low spatial period. This allows us to create an intermediate
imageandusea second imaging lenswith lowresolution capabilitywhile still obtainingan imagingquality
as good as that provided by the first imaging lens. This is an important improvement in comparison with
the original super-resolving method with two fixed gratings. © 2008 Optical Society of America

OCIS codes: 100.6640, 110.4850.

1. Introduction

Super-resolution is a technique for having high-qual-
ity imaging while using low-quality (in the sense of
resolution) imaging lenses. It allows us to take advan-
tage of the properties provided by the low numerical
aperture (NA) lenses (long working distance, large
field of view, and large depth of focus), while the final
improved resolution is equivalent to a higherNA lens.
The classic way to achieve the super-resolution effect
is by using information theory [1–3] and a given a
priori knowledge of the input object; by knowing that
the object belongs to a certain class of objects, it is pos-
sible to encode spatial-frequency information regard-
ing the object’s spectrum into unused channels of the

optical system in such a way that this encoded infor-
mation can pass through the limited system’s aper-
ture. Because of this a super-resolved image (i.e.,
with enhanced spatial resolution) can be obtained
using an appropriate decoding process for the addi-
tional information.

But to obtain such resolution improvement, we
must pay with some other degree of freedom that is
not usedas an information carrier in the image forma-
tion. Typical payments [4,5] are made with the time
domain [6–10], the wavelength domain [11,12], the
restricted object shape [13], the limited intensity dy-
namic range [14], and polarization [15–17]. An inter-
estingapproach involving twostatic gratingswas first
presented by Lukosz [18,19] and later expanded and
tested by other researchers [20–22]. The Lukosz
method [18,19,23,24] places two static gratings in
one of two possible configurations: one grating before
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the object and the other before the image or one grat-
ing between the object and the image and the other
after the image plane. Then a super-resolved imaging
is obtained while payment in the field of view is as-
sumed. To have super-resolution the two fixed grat-
ings create ghost images that limit the field of view
around the region of interest. Except the reduction
in the field of view, the concept is applicable inasimple
waysince thetwogratingsarestatic.However, thedis-
cussed system had a magnification of one [18,19],
therefore it had one major problem; one of the two
gratings is not positioned between the object and
the image. This means that for the case of placing
the first gratingafter the object, a second imaging lens
is required to image the second grating (which is posi-
tioned after the intermediate image plane) on the out-
put plane. To do that the second imaging lens must
provide a resolution as high as the resolution one
wished to extract, therefore the super-resolution per-
formed to the first lens seems to not be very useful.
Wepresent an interestingmodification of the super-

resolution approach with the two fixed gratings
[18,19] that has two main novelties. First, instead
of using a monochromatic light source, we use poly-
chromatic illumination. Since the position of each
ghost image iswavelength-dependent (dueto thegrat-
ings), the various images are averaged and no limita-
tion on a restricted field of view is required. This is a
very important release in the restrictions of this ap-
proach. The payment will be done in the dynamic
range required from the sensor. Second, the imaging
system we constructed has a large magnification ra-
tio, therefore the second grating ismagnified tomatch
the first grating. Because of the difference in the ratio
between themagnification of the two parts of the pro-
posedconfiguration (in theoriginal configurationboth
parts of the system had equal magnification of unity),
the spatial period of the second grating is also very
large, and the addition of the second imaging lens
to image it to the output plane does not require a
high-resolution lens. Therefore, the gratings perform
super-resolution only on the first imaging lens, and
the setup is therefore much more effective.
The technique described in this paper is applicable

to practical imaging systems since this is, to the best
of our knowledge, the first paper that reports how to
overcome the field of view limitation that was intro-
duced 30 years ago in the static grating approach of
Lukosz. This is a very practical innovation using the
two static grating approach for practical configura-
tions with improved resolving capabilities.
In Section 2 we briefly present the theoretical ana-

lysis of the presented approach. In Section 3 we show
some experimental results. Section 4 concludes
the paper.

2. Mathematical Analysis

In this section we will prove that indeed when a poly-
chromatic illumination is used instead of a mono-
chromatic one, the approach of two fixed gratings
can provide super-resolved imaging without paying

with the field of view. The trade-off in this case will
be the dynamic range since the undesired replica-
tions will be averaged into a uniform intensity distri-
bution. (Because the various replications do not fall
on the same spatial position, their summation is the
equivalent of the spatial averaging of the product
between the image of the object and the spectral dis-
tribution of the illumination. Such an averaging ap-
proximately yields a constant in case of a large
number of spatially dispersed replications.) Figure 1
shows the sketch of the optical setup we propose. The
setup includes two cascaded imaging modules. The
first has a magnification of M1 ¼ u1=v1 and the sec-
ond of M2 ¼ u2=v2. The fixed gratings, G1 and G2, are
positioned at distances of z0 and z1 from the input
and the intermediate image planes, respectively.
The focal lengths of the two imaging lenses are F1
and F2, respectively. The values of v1, u1, and F1
as well as v2, u2, and F2 fulfil the imaging relation.
Each of the two imaging lenses has a finite aperture
determining its limits of spatial resolution.

In the two fixed gratings approach, the first grat-
ing is used as an encoding function (that encodes the
spatial information of the input object and allows its
transmission through the band-limited aperture of
the imaging lens), while the second is used as a de-
coder (that reconstructs the encoded information and
produces the super-resolved image). Both must have
identical spatial distributions except for a scaling
factor that depends on the ratio between the magni-
fications of the two parts of the optical configuration
of Fig. 1. We intend to use a large ratio between M2
and M1 such that the spatial period of the required
grating G2 will be very large and will not be de-
formed by the cut off frequency of the imaging lens
of the second part of the configuration of Fig. 1.

Since we aim to prove the effect of using polychro-
matic illumination, due to reasons of simplicity for the
mathematical validation, we will assume that
M1 ¼ M2 ¼ 1, i.e., v1 ¼ u1 ¼ 2F1, v2 ¼ u2 ¼ 2F2, and
F1 ¼ F2 ¼ F. We refer to Ref. [24] for the mathemati-
cal derivation. There an optical setupwith similar as-
sumptions to ours is mathematically analyzed. The
analysis is based on basic Fourier optics relations,
while the outline for the formulation is as follows:
The input field distribution is free space propagated
a distance of z0 andmultiplied by the first grating G1.
Then it is virtually propagated backwards by a free
space distance of−z0 to reflect the effect of this grating
over the input plane. The result is Fourier trans-

Fig. 1. (Color online) Proposed experimental setup.
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formed and multiplied by a rectangular function
rectðΔμ=λ2FÞ, whereΔμ represents the lateral extent
of the aperture of the imaging lens. The result is in-
verse Fourier transformed to reach the image plane.
The distribution there is free space propagated a dis-
tance of −z1 and multiplied by the grating G2, then
propagated backwards a free space distance of z1 to
reflect the grating to the imageplane,which is imaged
with a magnification of 1 (in the simplified assump-
tion) to the output plane. The field distribution ob-
tained in the image or in the output plane, after all
those mathematical procedures, equals

u0ðx; z ¼ 4FÞ ¼
X
m

X
n

AmBn

Z
∞;

−∞;

~u0ðνÞrect
�νþmν0
Δμ=λ2F

�

· exp
�
2πi

�
xðmν0 þ nν1Þ þ νðz0λmν0 − z1λnν1Þ

þ z0λm2ν20
2

−
z1λn2ν21

2
− z1λmnν0ν1

��
exp½2πixν�dν;

ð1Þ

where v0 and v1 are the fundamental frequencies of
the gratings G1 and G2, respectively; Am and Bn
are the Fourier series coefficients of G1 and G2, re-
spectively; ~u0ðνÞ is the Fourier transform of the
high-resolution input field distribution; n and m
are integers; λ is the optical wavelength; and v is
the spectral coordinate. In this simplified configura-
tion the axial location of z ¼ 4F is the position of
the image plane, which is basically also the output
plane since the effect of the grating G2 that appears
after the image plane was already taken into account
(i.e., reflected to the output plane).
The physicalmeaning of Eq. (1) can be explained as

follows: basically it is an inverse Fourier transform of
the Fourier of the input field distribution ~u0ðνÞmulti-
plied by a synthetic aperture and an additional phase
term. Because of the summation over the indexm, the
spectrumof the input field ~u0ðνÞ is actuallymultiplied
by a synthetic aperture that is wider than the original
aperture set by the dimensions of the imaging lens.
The rect expression is synthetically enlarged due to
its replications and following the summation over
the indexm. Therefore, sincemore spatial frequencies
can pass through (since we have extended the syn-
thetic aperture), the output image can contain spatial
resolution equal to the one confined within the input
field distribution. However, Eq. (1) also contains an
undesired phase term of

exp
�
2πi

�
xðmν0 þ nν1Þ þ νðz0λmν0 − z1λnν1Þ

þ z0λm2ν20
2

−
z1λn2ν21

2
− z1λmnν0ν1

��
:

To have true super-resolution we need to see in
which conditions this term becomes a constant that
does not affect the inverse Fourier transform inte-
gral. We chose z0 ¼ −z1 and ν0 ¼ ν1 ¼ Δμ

λ2F (two identi-
cal gratings), which yield

u0ðx; z ¼ 4FÞ ¼
X
m

X
n

AmBn

Z
∞;

−∞;

~u0ðνÞ

× rect
�νþmν0
Δμ=λ2F

�
· exp

�
2πi

�
xðνþ ν0ðmþ nÞÞ

þ νðz0λðmþ nÞν0Þ þ
z0λν20
2

ðmþ nÞ2
��

dν: ð2Þ

Note that the values of z0 and z1 are measured ac-
cording to the notations of Fig. 1. This means that
choosing z0 ¼ −z1 means that either G1 and G2
are in front of the input and image planes, respec-
tively, or the both are after those planes. For n ¼
−m super-resolution is obtained since

u0ðx; z ¼ 4FÞ ¼
Z

∞;

−∞;

~u0ðνÞ
�X

m

AmB−mrect
�νþmν0
Δμ=λ2F

��

× exp½2πixν�dν: ð3Þ

The expression in Eq. (3) is the proof of super-
resolution since the spectrum of the input field dis-
tribution ~u0ðνÞ is multiplied by an extended synthetic
aperture (the term in brackets) allowing the trans-
mission of higher spatial frequencies and therefore
reconstruction of the output field u0ðx; z ¼ 4FÞ con-
taining smaller spatial details.

Choosing m ¼ −n is equal to paying with the field
of view since all the replicas that do not fulfil this
condition (crossed terms with n ≠ −m) will appear
at spatial positions of

xm;n ¼ λz0ν0ðmþ nÞ: ð4Þ

The field of view for the input field distribution
should be smaller than the expression of Eq. (4) such
that the undesired terms for which m ≠ −n will not
distort the reconstructed image of the output plane.

This derivation has been done before and is de-
scribed in Refs. [18,19,24]. Now we will see how
the use of polychromatic illumination can remove
the drawback of this approach related to the pay-
ment with the field of view.

Note that Eq. (3) is for the field distribution. In our
case, since we illuminate with polychromatic illumi-
nation, we will compute the intensity for the final
outcome of the mathematical derivation, then aver-
age it for the various wavelengths because a mono-
chromatic detector averages the readout over the
spectral range of the illumination:
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jhðx; z ¼ 4FÞj2 ¼
Z
Δλ

SðλÞ
X
m

X
n

X
m0

X
n0

AmBnA�
m0B�

n0

×
Z

∞;

−∞;

Z
∞;

−∞;
rect

�νþmν0
Δμ=λ2F

�
rect

�ν0 þm0ν0
Δμ=λ2F

�

· exp
�
2πi

�
xðνþ ν0ðmþ nÞÞ þ νðz0λðmþ nÞν0Þ

þ z0λν20
2

ðmþ nÞ2
��

· exp
�
−2πi

�
xðν0 þ ν0ðm0 þ n0ÞÞ

þ ν0ðz0λðm0 þ n0Þν0Þ þ
z0λν20
2

ðm0 þ n0Þ2
��

dλdνdν0;

ð5Þ

where jhj2 is the intensity impulse response for the
spatially incoherent case, Δλ is the spectral range
of the illuminating source (over which we performed
our averaging), and SðλÞ is the spectral distribution
of the source. We will assume that this distribution is
more or less uniform within the spectral range of Δλ.
To obtain the expression for the impulse response, we
have assumed that in the input plane we have a point
source, i.e., its Fourier transform is a constant:
~u0ðνÞ ¼ 1. To compute the output distribution in case
any general distribution is positioned in the input
plane, we need to convolve this impulse response
with the intensity of the input object. We denote

ξ≜νðz0ðmþ nÞν0Þ þ
z0ν20
2

ðmþ nÞ2 − ν0ðz0ðm0 þ n0Þν0Þ

−
z0ν20
2

ðm0 þ n0Þ2:

Inspecting the obtained result within the spatial
spectral range of the synthetic super-resolved aper-
ture leads to

jhðx; z ¼ 4FÞj2 ¼
X
m

X
n

X
m0

X
n0

AmBnA�
m0B�

n0

×
Z

∞;

−∞;

Z
∞;

−∞;
rect

�νþmν0
Δμ=�λ2F

�
rect

�ν0 þm0ν0
Δμ=�λ2F

�

· exp½2πixðνþ ν0ðmþ nÞ − ν0 − ν0ðm0 þ n0ÞÞ�

·
Z
Δλ

SðλÞ exp½2πiλξ�dλdνdν0; ð6Þ

where �λ is the average wavelength of the illuminat-
ing spectral band.
Since we assume the spectral bandwidth of the

illumination to be wide enough and uniform enough,
we can approximate that

Z
Δλ

SðλÞ exp½2πiλξ�dλ ≈ Sð�λÞ
Z
Δλ

exp½2πiλξ�dλ ¼ κ⋅δðξÞ;
ð7Þ

where κ is a constant. Since Eq. (7) contains a delta

function, it is valid only for ξ ¼ 0, which is obtained
only for the case when the integer indexes fulfil m ¼
−n and m0 ¼ −n0. This is true since only then the
phase of the exponent expð2πiλξÞ is zero, and there-
fore all the components are added constructively dur-
ing the integration process over the full range of
values of λ. Therefore the result of Eq. (3), having the
physical meaning of super-resolved imaging, may be
obtained without limiting the field of view:

jhðx; z ¼ 4FÞj2 ¼
����
Z

∞;

−∞;

�X
m

AmB−mrect
�νþmν0
Δμ=�λ2F

��

× expð2πixνÞdν
����
2
: ð8Þ

The proposed super-resolving technique, allowing
us to improve the resolution with two fixed gratings
without paying in the field of view, still requires the
payment in the dynamic range or the signal-to-noise
ratio (SNR) in the detector. Averaging over the wave-
lengths eventually reduces the SNR of the informa-
tion. Nevertheless, since detectors with a high
dynamic range of 12 bits or more are commonly avail-
able, it is easier to pay with the dynamic range and
allow its partial sacrifice than the previous payment
in the field of view, which was much more limiting.

3. Experimental Results

To demonstrate the presented approach, the optical
setup shown in Fig. 2 was constructed in the labora-
tory. The experimental setup included two imaging
modules. The magnification of the first imaging sys-
tem was selected to be 7:5×. The second imaging
module magnifies the first image plane into the out-
put plane, and its magnification can be selected ac-
cording to our benefit. As a first imaging system, we
used a long working distance infinity corrected Mitu-
toyo microscope lens with a 0.14 NA. A photographic
objective with a variable focus (or magnification) is
used as the second imaging system. Notice that simi-
lar to commercial microscopes, the second imaging
system acts as a tube lens. This lens should not have
the restriction of having a fixed magnification.

White light illumination is provided by a halogen
lamp source, and a 3CCD color video camera (SONY
Model DXC-950P) captures the final images. The ha-
logen lamp has a relatively uniform spectrum in the
visible range (it resembles blackbody radiation), and
therefore the assumption for the spectral uniformity,
as done in the mathematical analysis of Section 2, is
valid. The spectrum of the halogen lamp is presented
in Fig. 3(a). These data were taken from the litera-
ture. In Fig. 3(b) we show the sensitivity response
of the three channels (R, G, and B) of the CCD. Those
charts are important since what is relevant to the op-
eration principle is not the illuminating spectrum
alone but rather its product with the sensitivity of
the detector. In Fig. 3(c) we plot the combined result
of the camera sensitivity and the spectrum of the
illumination by adding the three channels’ sensitiv-
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ities, each onemultiplied by the spectrum irradiance.
To demonstrate the validity of our assumption, for
the delta function of Eq. (7), we computed the

magnitude of the Fourier transform of the chart of
Fig. 3(c). The display is in decibel units. As can be
seen in Fig. 3(d), the magnitude of the Fourier is in-

Fig. 2. (Color online) Photograph of the experimental setup in the laboratory.

Fig. 3. (a) Illumination spectrum of the halogen lamp. (b) Sensitivity response of the three channels (R, G, and B) of the CCD. (c) The
combined response of the illumination spectrum and the sensitivity of the CCD (the addition of the three channels’ sensitivities each
multiplied by the spectral irradiance of the lamp). (d) The magnitude of the Fourier transform of the combined chart of (c).
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deed nearly a delta function with an attenuation of
more than 10 times for the values surrounding the
peak of the delta.
Two precision Ronchi ruling slides were used as

diffraction gratings in the experiment. The period
of both the G1 and G2 gratings was p1 ¼
600 lp=mm and p2 ¼ 80 lp=mm, respectively (due to
the ratio of magnifications between the two parts
of our setup, the second grating could be a low-
frequency grating). The period of the first grating
is selected depending on the NA of the microscope
lens that was used as the first imaging system. To
achieve a resolution gain factor close to 2, the diffrac-
tion angle for a central wavelength of the broadband
spectral light used as illumination must be nearly
twice the angle defined by the NA of the objective.
This means a period of ∼500 lp=mm is suitable for
such a resolution improvement. Once the first grat-
ing is selected, we can both fix the magnification of
the microscope objective and properly select the G2
grating, or the opposite. In our case a ratio of 7.5 was
defined by the periods of both diffraction gratings,
and this will be the magnification that will be aimed
for the microscope lens.
Since the second imaging setuphadamagnification

such that the low NA of the imaging lenses did not
reduce resolution anymore, a true super-resolved im-
age was obtained. The experiment was performed for
one-dimensional (1D) super-resolution, and therefore
the super-resolving factor obtained may be easily ex-
tracted just by comparing the resulting resolution on
both principal axes. Our purpose was to demonstrate
the super-resolution and show that the result is ob-
tained without paying with the field of view when
the white light source is used.
We have used a negative high-resolution U.S. Air

Force test target. Figure 4(a) depicts the full field of
view image when the presented approach is used and
the magnification of the second imaging system is
near to 1. We can see that because the ghost images
are wavelength sensitive due to the diffraction orders
of the gratings, they are averaged in the background
(which means there is no limitation on the field of
view). On the other hand the proper combination
of diffraction orders between both gratings compen-
sates their chromatic dispersion and reinforces the
white light super-resolved image. In Fig. 4(b) we
show the classic Bachl and Lukosz [19] monochro-
matic experiment by simply placing an interference
filter (515nm main wavelength) before the input
plane. Because the ghost images are not averaged,
the final resolution is limited by the distance be-
tween the replicated diffraction orders. In this case
a reduction in the field of view is needed to allow
super-resolution over the region of interest.
In Fig. 4(c) we show the cross section of the region

marked by the square in Fig. 4(a). The purpose was
to compute the reduction in contrast due to the usage
of white light illumination. The cross section was
computed in two locations [as indicated in the upper
right-hand corner of Fig. 4(c)]. The circles (in red) in-

dicate the cross section in the lower part of the
marked region where no replication was generated
and thus no reduction in contrast. The squares (in
blue) show the cross section in the upper part of
the marked region where the various replications

Fig. 4. Experimental results. (a) The full field of view super-re-
solved image obtained using the presented approach, and
(b) the full field of view image with monochromatic illumination
(Bachl and Lukosz [19] approach). (c) Cross section of (a) for the
purpose of computing the reduction in contrast.
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(differently positioned due to the use of the polychro-
matic illumination) reduced the contrast of the bars.
The contrast of the circles is 0.946 while that of the
squares is 0.586. This reduction of 39% in contrast is
due to the replications. Our computation of contrast
was performed according to

C ¼ Imax − Imin

Imax þ Imin
; ð9Þ

where Imax is the maximal value of the intensity and
Imin is its minimal value.
Note that this super-resolution approach, as other

approaches involving gratings, is not energetically
efficient. Because of the gratings only a certain por-
tion of the input energy arrives at the region of inter-
est in the output plane. However, one must
distinguish between energetic efficiency and con-
trast. The reduction in energy may be compensated
if the illumination source is strong enough and if the
detector has an automatic gain control function that
adapts the dynamic range of its sampling (analog to
digital conversion) to the average level of the arriving
energy. The contrast reduction cannot be compen-
sated in the hardware since it is related to the
SNR and to the number of sampling bits identifying
the signal from the background noises.
Theoretically speaking, the reduction in contrast

can be estimated as follows: since the contrast is de-
fined as formulated in Eq. (9) and, due to the replica-
tions, a DC background is added to the intensity (Imax
and Imin), one may obtain the expression for new
contrast as

C ¼ Imax − Imin

Imax þ Imin þ 2DC
; ð10Þ

where the DC background is exactly the average of
the imaged object:

DC ¼
R
Δλ SðλÞu0ðx − β1λ; y − β2λÞdλ

Δλ ; ð11Þ

where β1 and β2 are constants and u0 is the imaged
object. For instance, in the case that resembles our
experiment where the object has an average gray le-
vel, i.e., DC of 60, and in spatial region where Imax ¼
180 and Imin ¼ 5, one will obtain a contrast reduced
to 0.58.

In Fig. 5we shown the central part of the resolution
target where a magnification of close to 7× is chosen
for the tube lens system. Onemay see that indeed the
resolution of the vertical lines (Group 9, Element 2
corresponding with 575 lp=mm) is much higher than
the resolution of the horizontal lines (Group 8,
Element 4 corresponding with 362 lp=mm). Therefore
the experiment has demonstrated resolution
improvement by a factor of almost 2.

4. Conclusions

We have presented an applicable practical modifica-
tion over the basic approach presented by Lukosz in
Ref. [18] and experimentally demonstrated later in
Ref. [19]. Unlike these previous works, in the pre-
sented approach the super-resolved image is ob-
tained without paying with the field of view due to
the usage of white light illumination. Experimental
results validate the presented approach in which
both encoding and decoding gratings are positioned
between the object and the image planes, and the re-
quired position for both gratings is obtained using
the proper magnification for the imaging setup.
Although the super-resolution effect presented here
is 1D, a two-dimensional (2D) case can be easily

Fig. 5. (Color online) Experimental results; the high-resolution region of interest in Fig. 4(a). The squares in vertical and horizontal lines
mark the resolution limit with and without applying the presented approach, respectively.
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obtained by simply replacing the 1D gratings with
2D gratings.
The super-resolved imaging, which is obtained

with two fixed gratings and without paying with
the field of view, causes a reduction in the SNR of
the spatial information. Nevertheless, since detec-
tors with a high dynamic range of 12 bits or more
are commonly available, it is easier to pay with
the dynamic range and to allow its partial sacrifice
than it is to pay with the field of view, which is much
more crucial.
In the experimental verification we have demon-

strated super-resolving factor of 2 without payment
in the field of view.

This work was supported by the Spanish Minister-
io de Educación y Ciencia under the project FIS2007-
60626.
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